Light and Waves

- > Speed of light in air = 3 X 10⁸ m/s
- Law of reflection

The angle of incidence equals the angle of reflection.

- > A real image is an image that can be formed on a screen.
- > A virtual image cannot be formed on a screen.
- $ightharpoonup n = \frac{\sin i}{\sin r}$ (When the ray from rarer to denser)
- $ightharpoonup n = \frac{\sin r}{\sin i}$ (When the ray from denser to rarer)
- $ightharpoonup n = \frac{1}{\sin c}$ Where c is critical angle
- Images formed by a Converging lens and nature

Object Position	Image Position	Image size	Upright or inverted
Beyond 2F	Between F and 2F	Smaller	Inverted
At 2F	At 2F	Same	Inverted
Between 2F and F	Beyond 2F	Larger	Inverted
Between F and lens	Behind object	Larger	Virtual,erect,Upright

- Speed of wave = Frequency X Wavelength (v=f X λ)
- ➤ Electromagnetic Waves—gamma rays,X-rays,uv rays, light ,IR, microwaves, radio waves— are **Transverse waves**
- Sound Waves Longitudinal waves.
- > Frequency increases Pitch increases.
- Amplitude increases Loudness increases.

Measurements

- ightharpoonup Density = $\frac{\text{Mass}}{\text{Volume}}$
- Weight = mass X acceleration due to gravity (w=mg)
- Hooke's law
 Extension is directly proportional to stretching force

F=kx

- Unit of Force - newton (N)
- > S.I unit of

Length- metre	Potential difference-volt	Acceleration-metre/sec ²
Mass- kilogram	Energy-joule	Frequency-hertz
Time-Second	Work-joule	Resistance-ohm
Current-Ampere	Power-watt	Resistivity-ohm-metre
Temperature-kelvin	Velocity-metre/second	Charge-coulomb

Forces and Pressures

- ➤ Moment of a force = Force X perpendicular distance of the line of action of the force from fulcrum.
- The stability of a body is increased by
 - 1) Lowering centre of mass
 - 2) Increasing the base area
- Work = force X distance moved in direction of force

$$Power = \frac{Work done}{time taken} = \frac{energy transfer}{time taken}$$

$$ightharpoonup$$
 Pressure = $\frac{\text{force}}{\text{area}}$

Liquid Pressure = depth X density X acceleration due to gravity (P=hpg)

Motion and Energy

- ➤ Average speed = distance moved time taken
 ➤ Velocity = Displacement Time taken

- Graphs and equations
 - i) The area under a velocity time graph measures the distance travelled.
 - ii) The slope or gradient of a velocity time graph represents the acceleration of the body.
 - iii) The slope or gradient of a distance time graph represents the velocity of the body.
- Newton's first law :

A body stays at rest, or if moving it continues to move with uniform velocity, unless an external force makes it behave differently.

- Resultant Force, F = mass(m) X acceleration (a)
- > One newton is the force required to give a mass of one kilogram an acceleration of 1 m/s^2
- ightharpoonup Kinetic Energy = $E_k = \frac{1}{2}$ m v^2
- Potential Energy = E_p = m g h
- Conservation of energy

$$\frac{1}{2}$$
 m v² = m g h

Loss of P.E = gain of K.E

- ightharpoonup Centripetal force, $F = \frac{m v^2}{r}$
- Momentum,P= M X V, Impulse, Ft = mv-mu.

Thermal Energy

- ➤ Absolute Zero = -273°C
- Expansion = linear expansivity X original length X temperature rise.
- Boyle's law

Temperature constant

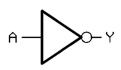
P is inversely proportional to V

P V = constant

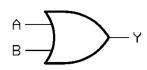
- Heat received or given out = mass X temperature change X specific heat capacity
 Q = m X ΔT X c
- Thermal capacity = mass X specific heat capacity = m X c
- Q = m X I_f = mass X specific latent heat of fusion
- \triangleright Q = m X I_v = mass X specific latent heat of vaporization

Electricity

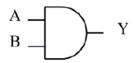
- > Charge, Q = Current (I) X time (t)
- ▶ P.d, V = E / Q
- \triangleright E = I X t X V
- ➢ Ohm's Law - V= I R
- $ightharpoonup R_{\text{series}} = R_1 + R_2 + R_3 + \dots$


$$ightharpoonup \frac{1}{R_{\text{parallel}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

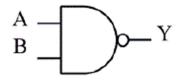
- ightharpoonup Resistivity, $\rho = \frac{RA}{I}$
- \triangleright E = I t V
- \triangleright P=IV
- \triangleright P = I² R
- \rightarrow E = I² R t
- ightharpoonup P = $\frac{V^2}{R}$
- ► Potential Divider $\frac{V_1}{V_2} = \frac{R_1}{R_2}$
- > 1 kWh = 3 600 000 J = 3.6MJ


Electronics

- Light dependent resistor (LDR) More light, less resistance
- > Thermistor More temperature, less resistance
- > Semiconductor diode
 - a) Use rectifier for changing ac to dc
 - b) Forward bias resistance is less
- > Transistor
 - a) Uses as switch and amplifier


- Logic gates
 - 1) NOT gate or Inverter

2) OR gate


3) AND gate

4) NOR gate

	•	
Α	В	Υ
0	0	1
0	1	0
1	0	0
1	J	0

5) NAND gate

Truth Table

Input	Output	
0	1	
1	0	

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

A B Y
0 0 0
0 1
0 1 0
1 1 1 1

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

Magnetism

- > The strength of an electromagnet increases if,
 - i. The current in the coil increases,
 - ii. The number of turns on the coil increases,
 - iii. The poles are moved closer together.
- > Fleming's left hand rule Motor rule
- Faraday's Law

The size of the induced p.d is directly proportional to the rate at which the conductor cuts magnetic field lines.

Lenz's law

The direction of the induced current is such as to oppose the change causing it.

- > Fleming's right hand rule Dynamo rule
- > Transformer Equation

$$\frac{Secondary\ voltage}{primary\ voltage} = \frac{Secondary\ turns}{primary\ turns}$$

$$\frac{V_s}{V_p} = \frac{N_s}{N_p}$$

Power in primary = power in secondary $V_p \times I_p = V_s \times I_s$

Radioactivity

Types of radiation	Alpha particle α	Beta particle β	Gamma particle γ
	Each particle is 2	Each particle is an	Electromagnetic
'	proton and 2	electron	waves similar to X-
	neutrons(like Helium)		ray.
Relative charge	+2	-1	0
Mass	High compared with	low	
	β		
Speed	Up to 0.1Xspeed of	Up to 0.9 X speed of	Speed of light
	light	light	_
Ionizing effect	Strong	Weak	Very weak
Penetrating effect	Not very penetrating.	Penetrating, but	Very penetrating
	Stopped by a thick	stopped by a few	power never
	sheet of paper or by	millimeters of	completely
	skin, or by a few	aluminium or other	stopped,though lead
	centimeters of air	metal.	and thick concrete
			will reduce intensity.
Effects of fields	Deflected by	Deflected by	Not deflected by
	magnetic and electric	magnetic and electric	magnetic or electric
	fields	fields	fields

➤ The half-life of a radioactive isotope is the time taken for half the nuclei present in any given sample to decay.

IGCSE Physics Tuition-8089384855